In the past twenty years, there has been a dramatic increase in the processing speed of computers, network capacity and the speed of the internet. These advances have paved the way for the revolution of fields such as quantum physics, artificial intelligence and nanotechnology. These advances will have a profound effect on the way we live and work, the virtual reality we see in movies like the Matrix, may actually come true in the next decade or so.
NANOCOMPUTERS

A component of nanotechnology, nanocomputing will give rise to four types of nanocomputers:
• Electronic nanocomputers
• Chemical and Biochemical nanocomputers
• Mechanical nanocomputers
• Quantum nanocomputers
• Chemical and Biochemical nanocomputers
• Mechanical nanocomputers
• Quantum nanocomputers
Electronic nanocomputers
Eletronic nanocomputers are created through microscopic circuits using nanolithography. [Nanocomputers]
Eletronic nanocomputers are created through microscopic circuits using nanolithography. [Nanocomputers]
Chemical and Biochemical nanocomputers
The interaction between different chemicals and their structures is used to store and process information in chemical nanocomputers. In order to create a chemical nanocomputer, engineers need to be able to control individual atoms and molecules so that these atoms and molecules can be made to perform controllable calculations and data storage tasks.
Mechanical nanocomputers
A mechanical nanocomputer uses tiny mobile components called nanogears to encode information. Some scientists predict that such mechanical nanocomputers will be used to control nanorobots.
Quantum nanocomputers
A quantum nanocomputer store data in the form of atomic quantum states or spin. Single-electron memory (SEM) and quantum dots are examples of this type of technology.
Humanizing Nanocomputers

• SPRAY-ON NANO COMPUTERS
Consider that research is being done at the Ediburgh University to create "spray-on computers the size of a grain of sand” that will transform information technology. The research team aims to achieve this goal within four years.
When these nanocomputers are sprayed on to the chests of coronary patients, the tiny cells record a patient’s health and transmit information back to a hospital computer. This would enable doctors to monitor heart patients who are living at home.
When these nanocomputers are sprayed on to the chests of coronary patients, the tiny cells record a patient’s health and transmit information back to a hospital computer. This would enable doctors to monitor heart patients who are living at home.
QUANTUM COMPUTERS

By computing many different numbers simultaneously and then interfering the results to get a single answer, a quantum computer can perform a large number of operations in parallel and ends up being much more powerful than a digital computer of the same size.
"In the tiny spaces inside atoms, the ordinary rules of reality ... no longer hold. Defying all common sense, a single particle can be in two places at the same time. And so, while a switch in a conventional computer can be either on or off, representing 1 or 0, a quantum switch can paradoxically be in both states at the same time, saying 1 and 0.... Therein lies the source of the power." Whereas three ordinary switches could store any one of eight patterns, three quantum switches can hold all eight at once, taking "a shortcut through time." [Scientific America.com]
"In the tiny spaces inside atoms, the ordinary rules of reality ... no longer hold. Defying all common sense, a single particle can be in two places at the same time. And so, while a switch in a conventional computer can be either on or off, representing 1 or 0, a quantum switch can paradoxically be in both states at the same time, saying 1 and 0.... Therein lies the source of the power." Whereas three ordinary switches could store any one of eight patterns, three quantum switches can hold all eight at once, taking "a shortcut through time." [Scientific America.com]
Quantum computers could prove to be useful for running simulations of quantum mechanics. This would benefit the fields of physics, chemistry, materials science, nanotechnology, biology and medicine because currently, advancement in these fields is limited by the slow speed of quantum mechanical simulations.
Quantum computing is ideal for tasks such as cryptography, modeling and indexing very large databases. Many government and military funding agencies are supporting quantum computing research to develop quantum computers for civilian and national security purposes, such as cryptanalysis.
ARTIFICIAL INTELLIGENCE

Natural-language processing would allow ordinary people who don’t have any knowledge of programming languages to interact with computers.
So what does the future of computer technology look like after these developments?
Through nanotechnology, computing devices are becoming progressively smaller and more powerful. Everyday devices with embedded technology and connectivity are becoming a reality. Nanotechnology has led to the creation of increasingly smaller and faster computers that can be embedded into small devices.
This has led to the idea of pervasive computing which aims to integrate software and hardware into all man made and some natural products. It is predicted that almost any items such as clothing, tools, appliances, cars, homes, coffee mugs and the human body will be imbedded with chips that will connect the device to an infinite network of other devices. [Pervasive Computing]
Hence, in the future network technologies will be combined with wireless computing, voice recognition, Internet capability and artificial intelligence with an aim to create an environment where the connectivity of devices is embedded in such a way that the connectivity is not inconvenient or outwardly visible and is always available. In this way, computer technology will saturate almost every facet of our life. What seems like virtual reality at the moment will become the human reality in the future of computer technology.
This has led to the idea of pervasive computing which aims to integrate software and hardware into all man made and some natural products. It is predicted that almost any items such as clothing, tools, appliances, cars, homes, coffee mugs and the human body will be imbedded with chips that will connect the device to an infinite network of other devices. [Pervasive Computing]
Hence, in the future network technologies will be combined with wireless computing, voice recognition, Internet capability and artificial intelligence with an aim to create an environment where the connectivity of devices is embedded in such a way that the connectivity is not inconvenient or outwardly visible and is always available. In this way, computer technology will saturate almost every facet of our life. What seems like virtual reality at the moment will become the human reality in the future of computer technology.
0 comments:
Post a Comment
was commented wisely ..
little comment from you
so mean to me